

Job No: 9557/1 Our Ref: 9557/1-AA-R3 2 August 2023

Camden Council PO Box 36 WICKHAM NSW 2293 Email: <u>Salina.Lama@facs.nsw.gov.au</u>

Attention: Mrs S Lama

Dear Madam

re: Proposed Twelve Boarding House 3-5 Kelloway Avenue, Camden (Lot 17 & 18 DP 219782) Preliminary Geotechnical Investigation

This letter report provides the results of a geotechnical investigation and inspection at the above site. The work was carried out on 30 May 2023 and was carried out in general accordance with Australian Standard AS1726 (Reference 1).

We understand the following:

- The proposed development at the above site includes future development of a boarding house, which would require excavation. Prior to investigation a site plan showing the proposed works of the boarding house was provided in preparation of this report.
- A geological investigation is required to assess subsurface conditions across the proposed location
 of boarding house, car park and site features and provide geotechnical recommendations for
 excavation condition, suitability of foundation on design of floors slabs and footings and soil bearing
 capacities.
- Designs provided for the proposed development indicates fill up to 1.5m and cuts up to 2.0m along with site preparation procedures.

Review of Available Information

Reference of the Geological Map of Wollongong (scale 1:250,000) indicates that bedrock at the site is likely to be Wianamatta Group shale, dark grey siltstones, calcareous claystone, laminate, lithic sandstone, and rare coals.

Reference to Soil Landscape Map indicates that the landscape of the site gently undulating rises on Wianamatta Group shale. Local relief to 30m with slopes usually <5% and occasionally up to 10%. Broad rounded crests and ridges with gently inclined slopes. Almost completely cleared eucalypt woodland, open-forest and tall open forest.

2

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

Reference to the Map of Salinity Potential in Western Sydney (scale approximately 1:140,000) indicates landscape in most part of the site has moderate salinity potential.

Geotech Testing Pty Ltd (Geotech Testing) has completed a preliminary site investigation (PSI) for the site and submitted a report (Reference 1). Review of PSI report indicates that a total of 4 test pits were excavated across the site and the sub-surface profile across the site comprises a sequence of topsoil underlain by natural soils and bedrock within the excavation depth. Localised fill may be present in some portions of the site but was not encountered at the time.

Topsoil is silty clay of low plasticity with gravel and rootlets, residual soils include silty clay of low to medium plasticity and traces of gravels.

Field Works

The following work was completed on the 30 May 2023 and consisted of the following:

- Review of geological and geotechnical information relevant to the site.
- A walk over survey to assess existing site conditions and reviewing services plans obtained from "Dial Before You Dig" to assess existing services across the site.
- Scanning test pit locations for underground services so that drilling would not damage the services. We engaged a specialist services locator for this purpose.
- Excavate four (4) test pits at the locations shown on the attached Drawing No 9557/1-AA1. Test pits drilled were terminated at depths of refusal or 2.0m. Engineering logs and explanatory notes are also attached.
- Collecting representative soil samples for visual assessment and laboratory testing.
- Backfilling the test pits with recovered soils after logging and sampling.
- Measure depths of groundwater, if encountered
- Carry out Dynamic Cone Penetrometer (DCP) tests to assess the strength characteristics of the subsurface soils. DCP tests will be terminated at refusal or depth of about 1.5m. DCP test results are included in the appropriate borehole logs.

Site Locality

The site address is located at 3-5 Kelloway Avenue, Camden off Old Hume Highway and roughly 1296m² which is located opposite of residential lots 4 and 6 and in between lots 1 and 7. The site is surrounded by medium to high residential lots with open grass lands and trees to the west along Burragorang Road.

Site Conditions

The site is of irregular rectangle at Kelloway Avenue, Camden. At the time of investigation, vegetation in the boarding house consisted of medium to high density grass coverage with trees along the boundary. No water way was visible from ground level of the site. The topography of the site is relatively flat with undulating ground levels, gentle slopes <3^o from south to north.

Sub-surface Conditions

Sub-surface materials encountered in the test pits are detailed in the attached engineering logs and summarised in Table 1 below.

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

Test Pit	Termination Depth (m)	Topsoil/Fill (m)	Residual (m)	Bedrock (m)
1	1.70	0.0-0.1	0.1-1.7	1.7
2	1.20	0.0-0.1	0.1-1.2	1.2
3	1.90	0.0-0.1	0.1-1.9	1.9
4	2.00	0.0-0.1	0.1-2.0	NE

Table 1 – Sub-surface Profiles

NE: Not encountered to the termination depth

Based on information presented in Table 1, the sub-surface profile across the site is anticipated to comprise a sequence of topsoil/fill and natural soils to depths exceeding 1.5m from existing ground surface. Natural soils are assessed to be residual soils and subsurface materials may in general be described as follows:

Topsoil Silty Clay, low plasticity, brown, with rootlets.

Residual Soil Silty CLAY, high plasticity, brown mottled grey, trace fine to medium sub-angular gravel. Silty CLAY, high plasticity, red brown mottled grey, trace fine sub-angular gravels.

Bedrock was unable to be confirmed at the time but is likely to consist of low to medium strength sandstone. Groundwater or seepage was not encountered on site at the time of investigation. However, it should be noted that groundwater/seepage level might vary due to rainfall, temperature, and other factors not evident during field work.

Laboratory Testing

A total of two (2) undisturbed 50mm diameter hollow tube (U_{50}) and one (1) disturbed sample were recovered from the site, aimed at determining the reactivity of the material to variations in moisture changes. The test conducted determines shrink/swell index and Atterberg Limits values.

Test Pit	Depth (m)	Material Description	Liquid Limit (%)	Plasticity Index (%)	Linear Shrinkage (%)	Shrink/Swell Index (%/pF)
1	0.4-0.6	Silty CLAY, high plasticity, red-brown, trace fine sub-angular gravels	-	-	-	4.7
3	0.4-0.6	Silty CLAY, high plasticity, brown, trace fine to medium sub-angular gravels	-	-	-	4.2
4	0.6-0.8	Silty CLAY, high plasticity, brown mottled grey, trace fine sub-angular gravels	71	42	18.5	-

Table 2 – Shrink/swell Index and Atterberg Limit Values

Site Classification

Based on information from two (2) test pits, the foundation materials within the footprint of the proposed boarding house are anticipated to be clayey fill of similar in nature. Therefore, the result of the shrink swell index test on a representative sample is considered to be indicative for the fill materials across the building footprint.

4

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

Based on shrink swell index value of 4.2%/pF to 4.7%/pF, the ground surface movement during moisture variation is estimated to be in the range of 45mm to 55mm. Therefore, the site for the proposed boarding house is assessed as Class H1, in accordance with Australian Standard AS2870 (Reference 4). This site classification is applicable at the time of conducting the investigation, being May 2023, and is based on the following assumptions:

- The recommendations for site maintenance set out with accordance to AS2870 are followed.
- The performance expectations set out with accordance to AS2870 are acceptable.

Floor Slabs and Footings

It is our understanding that existing topsoil/fill will be removed or replaced with controlled fill. Therefore, ground floor slabs for the proposed boarding house may be designed and constructed as ground bearing slabs or suspended slabs supported by footings designed in accordance with recommendations provided in this report.

Ground floor slabs bearing on controlled fill or natural soils may be designed for a Class "H1" site in accordance with Australian Standard AS287-2011. Alternatively, ground bearing slabs on controlled fill or natural soils may be designed for a recommended Modulus of Subgrade Reaction value of 20kPa/mm.

Loading conditions for the proposed development are not known at this stage. However, we consider that appropriate footings would comprise shallow footings (pad and strip footings) founded on controlled fill and/or natural soil. The recommended allowable bearing pressures for design of shallow footings are as follows:

- Recommended allowable bearing pressure for footings founded in controlled fill is 150kPa.
- Recommended allowable bearing pressure for footings founded in residual soils at depths up to 1.0m is 150kPa.
- Recommended allowable bearing pressure for footings founded in residual soils at depths of 1.0m to 2.0m is 200kPa.

For footings founded in controlled fill and natural soils the total settlements of footings under the recommended allowable bearing pressures are estimated to be approximately 2.0% of the minimum dimension of footings. The differential settlements are estimated to be about half the estimated total settlements.

As actual nature of existing fill may vary across the proposed site depths the recommended allowable bearing pressures could also vary across the site. Therefore, an experienced Geotechnical Engineer, on the basis of assessment made during footing excavation or pier hole drilling, should confirm founding levels and recommended allowable bearing pressure during construction.

Soil Salinity

Salinity refers to the presence of excess salt in the environment, either in soil or water. Salinity is a serious problem for any development due to the many environmental, economic and social impacts. Main impacts attributed to soil salinity and relevant to the proposed residential development include damage to houses, roads, highways and other structures, caused by the deterioration of brick, mortar, concrete, bitumen and asphalt, and corrosion of metal (pipes, cables) etc.

5

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

Soil salinity is generally assessed by measuring Electrical Conductivity (EC) of a soil sample made up of 1:5 soil water suspension. Thus determined Electrical Conductivity (EC) is multiplied by a factor varying from 6 to 17, based on the texture of the soil sample, to obtain Corrected Electrical Conductivity designated as EC_e (Reference 3). Alternatively, EC_e may be directly measured in soil saturation extract. Soils are classified as saline if Electrical Conductivity (EC_e) of the saturated extracts exceeds 4dS/m or 4mS/cm. The criteria for assessment of soil salinity classes are shown in the following Table 6 (Reference 6).

Classification	EC₀ (dS/m)	Exposure Classification AS2870-2011	Comment				
Non saline	<2		Salinity effects mostly negligible				
Slightly saline	2 – 4	A1	Yields of very sensitive crops may be affected				
Moderately saline	4 – 8	A2	Yields of many crops affected				
Very saline	8 – 16	B1	Only tolerant crops yield satisfactorily				
Highly saline	>16	B2	Only a few tolerant crops yield satisfactorily				

Table 3 - The Criteria for Assessment of Soil Salinity Classes

Note 1 µS/cm=1000xdS/m

Measurements of EC for 8 representative soil samples from the site are presented in Table 3. For clayey soils encountered across the site, it is our assessment that the appropriate multiplying factor is about 6 to 8. Based on site observation, a multiplication factor of 6 was used for the soil encountered during field work.

For assumed factor of 6, EC_e values of representative samples are assessed to vary from 0.50 dS/m to 3.6 dS/m, with average of 1.51 dS/m. Out of the 8 representative soil samples, none of the representative soil samples taken exceeds 4dS/m. Table 3 also shows that the EC_e values of soils samples fluctuate irrespective of the depth.

Thus, it is our assessment that the soils across the site are non to slightly saline up to depths of about 1.5m from existing ground surface. Therefore, it is our assessment that the earthworks involving excavation and disturbance of soils are carried out in accordance with construction plans from Cardno.

Acidity (pH) testing was also conducted to determine the aggressivity of the soils to steel and concrete. The various classes of aggressive soils are defined as follows according to AS2870-2011.

······································								
Classification	рН	Exposure Classification AS2870-2011						
Non-aggressive	>5.5	A1						
Mild	4.5-5.5	A2						
Moderate	4.0-4.5	B1						
Severe	<4.0	B2						

Table 4 - Th	e Criteria for	Assessment of Soil	Salinity Classes
			Jammily Glasses

Based on the results, it is assessed that soils at the site are generally slightly saline and non-aggressive to steel and concrete. Therefore, based on the procedures described in AS2870-2011 the exposure classification for the proposed lots is in table 5.

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

Test Pit	Depth (m)	PH	EC (µS/cm)	soil description	MF	ECe (dS/m)	Exposure Classification
TP1	0.4-0.5	5.9	120	high plasticity silty clay	6	0.72	A1
TP1	1.0-1.1	5.9	410	high plasticity silty clay	6	2.46	A1
TP2	0.4-0.5	7.1	170	high plasticity silty clay	6	1.02	A1
TP2	1.0-1.1	8	600	high plasticity silty clay	6	3.6	A1
TP3	0.4-0.5	6.8	120	high plasticity silty clay	6	0.72	A1
TP3	1.0-1.1	8.6	420	high plasticity silty clay	6	2.52	A1
TP4	0.4-0.5	6.1	86	high plasticity silty clay	6	0.516	A1
TP4	1.0-1.1	5.9	83	high plasticity silty clay	6	0.498	A1

Table 5: Laboratory Test Results

Conclusion

Based on the procedures described in AS2870-2011 the exposure classifications for the proposed boarding house are classified as '**A2**'.

Based on the results of the post site works salinity assessment, the site is suitable for the boarding house development. The construction requirements for <u>A2</u> classifications are shown below (AS2870-2011, Table 5.3).

Classification	Minimum Design Characteristic Strength	Minimum Initial Curing		
A2	25 MPa	3 days		

Pavement Testing for Proposed Internal Roads

Proposed boarding house is understood to include construction of some internal roads for car park. Pavement design for these roads depends on anticipated traffic loading and subgrade conditions.

It is our understanding that the proposed internal roads within the site will be classified as Local Streets in accordance with Camden Council. The council recommended traffic loadings for design of pavements of Local Streets and Collector Roads are 5.0×10^5 Equivalent Standard Axle (ESA).

Laboratory tests on representative samples from subgrade materials along internal roads and carpark is listed below on table 5.

 Table 5 – Shrink/swell Index and Atterberg Limit Values

Test Pit	Depth (m)	Sample Summary Description	MDD (t/m³)	OMC (%)	FMC (%)	Variation (%)	Swell (%)	CBR (%)
TP1	0.6-0.9	Silty CLAY, high plasticity, brown mottled grey, trace fine to medium sub- angular gravels	1.49	27.0	24.7	2.3 dry	3.5	1.0
TP2	0.2-0.5	Silty CLAY, high plasticity, brown mottled grey, trace fine sub-angular gravels	1.49	26.5	23.7	2.8 dry	3.5	1.5

MDD: Maximum Dry Density, FMC: Field Moisture Content, OMC: Optimum Moisture Content, Variation from OMC, CBR: California Bearing Ratio

7

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

Foregoing results indicate the following:

CBR values of 1.0% to 1.5% with the high swell greater than 3.0%. Soils with CBR values of less than 3.0% are generally considered to be unsuitable as road pavement.

We recommend subgrade replacement due to the low CBR and high swell values. The road pavement should be constructed only after the subgrade is improved using one of the following methods:

- Method 1: Replace upper 300mm of existing subgrade with crushed sandstone (minimum of CBR≥20%) compacted to achieve a Dry Density Ratio of at least 100% Standard at about Optimum Moisture Content.
- Method 2: Stabilise upper 300mm of subgrade materials with lime and compact to achieve a Dry Density Ratio of at least 100% Standard at about Optimum Moisture Content. Actual proportions of lime to be used for stabilisation will have to be determined by conducting compaction and CBR tests on lime stabilised subgrade samples. However, for preliminary budgeting purposes we suggest allowing 3.0% to 5.0% of lime by weight.

Once subgrade improvement is placed for the internal roads is completed in accordance with one of the above methods, we recommend that the pavement for all internal roads be designed for indicative CBR value of 4.0%.

Basecourse and sub-base materials should satisfy RMS Specifications for DGB20 and DGS40 respectively (Reference 8). The pavement design is valid only if the subgrade and pavement materials are compacted to the following Minimum Dry Density Ratios:

Basecourse	98% Modified
Sub-basecourse	95% Modified
Subgrade	100% Standard

This pavement design assumes the provision of adequate surface and sub-surface drainage of the pavement and adjacent areas.

DISCUSSION AND RECOMMENDATIONS

Nature of Existing Fill

Test pits indicate that the site is underlain by about 0.1m thick topsoil. Although fill was not encountered at the time of investigation, it should be noted that fill may be at various locations. If fill is to be encountered the fill is likely to be well compacted the presence of topsoil means that the fill is unlikely to be controlled fill. In addition, we do not have information on how the existing fill was placed. Therefore, unless there is evidence (such as density test results) certifying that the fill is controlled; the fill should be considered uncontrolled in nature and unsuitable as a load bearing foundation for the proposed development.

If evidence indicating that the fill is controlled is not available, we recommend that suitability of the existing fill as foundation material for the proposed boarding house is confirmed by proof rolling and insitu density tests. If proof rolling shows significant movement and insitu density tests indicate highly variable degrees of compaction and/or poor compaction (dry density ratio less than 95% Standard) the fill will be considered "uncontrolled" and unsuitable as load bearing foundation material.

8

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

Site Preparation

We anticipate that earthworks will involve some cut and fill operations of depths up to 2.0m from existing ground surface. Therefore, materials to be excavated are expected to comprise topsoil and residual soil underlain with bedrock. Excavation of these materials can be achieved using conventional earthmoving equipment such as excavators and dozers.

We do not anticipate significant groundwater inflow during excavation to about 2.0m. However, it should be noted that fluctuations in the level of groundwater and/seepage might occur due to variations in rainfall and/or other factors and trafficability problems could arise locally during wet weather or if water is allowed to pond at the site.

We recommend the following procedures for placement of controlled fill during site preparation:

- Strip existing fill/topsoil and stockpile separately for possible future use. Topsoil may be used in landscaping. Existing fill may be used in controlled fill after moisture conditioning, removal of unsuitable materials and environmental validation.
- Undertake proof rolling (using an 8 to 10 tonnes roller) of the exposed natural soils to detect potentially weak spots (ground heave). Excavate areas of localised heaving to a depth of about 300mm and replace with granular fill compacted as described below.
- Undertake proof rolling of soft spots backfilled with granular fill, as described above. If the backfilled area shows movement during proof rolling, this office should be contacted for further recommendations.
- Place fill in horizontal layers of 200mm to 250mm maximum loose thickness and compact to a Minimum Dry Density Ratio (MDDR) of 95% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). Controlled fill should preferably comprise non-reactive fill (e.g. crushed sandstone) with a maximum particle size not exceeding 75mm, or low plasticity clay. The fill materials and residual soil obtained from excavations within the site may be selectively used in controlled fill after environmental validation, moisture conditioning and removal of unsuitable materials (construction materials etc).

Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the specifications. We recommend "Level 2" or better supervision, in accordance with AS3798-2007 (Reference 1). It should be noted that a Geotechnical Inspection and Testing Authority will generally provide certification on quality of compacted fill only if Level 1 supervision and testing is carried out.

Batter Slope and Retaining Structures

Cut and fill slopes during and after site preparation works should be battered for stability or retained by engineered retaining structures. Recommended batter slopes in controlled fill and natural soils for short-term (temporary) and long-term (permanent) stability, are presented below:

- Short-term stability = 1 vertical to 1 horizontal
- Long-term stability = 1 vertical to 2.5 horizontal

The above batter slopes are appropriate the cut and fill slopes located at least 1.0m away from load bearing structures and the slopes are protected from surface and sub-surface water flow.

GEOTECH TESTING PTY LTD

9

9557/1-AA-R3 3-5 Kelloway Avenue, Camden

If cut and fill slopes steeper than those recommended above are required for whatever reason, these slopes should be retained by engineered retaining structures. Appropriate retaining structures for the proposed excavation would comprise cantilever walls and gravity walls. The pressure distribution on such walls is assumed to be triangular in shape and estimated as follows:

 $p_h = \gamma k H$

Where,

 $\begin{array}{ll} p_h & = \mbox{Horizontal pressure } (kN/m^2) \\ \gamma & = \mbox{Total unit weights of retained materials } (kN/m^3) \\ k & = \mbox{Coefficient of earth pressure } (k_a \mbox{ or } k_o) \\ H & = \mbox{Retained height } (m) \\ \end{array}$

For design of flexible retaining structures where some lateral movement is acceptable use an active earth pressure coefficient (ka) of 0.35 is recommended. However, if it is critical to limit the horizontal deformation, use of an earth pressure coefficient at rest (ko) of 0.55 is recommended. These coefficients are based on the assumptions that the ground level behind the retaining structure is horizontal and the retained material is effectively drained. Additional earth pressures resulting from surcharge loads (buildings, infrastructures, etc) on retained materials and groundwater pressure, if any, should also be allowed for in design of retaining structures.

Limitations

As the recommendations presented in this report are based on information from four (4) excavated test pits, laboratory testing on a representative soil sample and site observations, actual sub-surface conditions across the site might differ from those expected (interpreted). If such differences are encountered during construction, we recommend that this office is contacted for further advice. This can also occur with groundwater conditions, especially after climatic changes.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECH TESTING PTY LTD

JOE CHEN Geotechnical Engineer

Attached

Drawing No 9557/1-AA1 – Test Pit Locations Excavation Logs and Explanatory Notes 9557/1 – Laboratory Test Results Reviewed by

EMGED RIZKALLA Director

GEOTE	CH
TESTING P.	TY LTD [®]

Test Pit LOG

TP ID: TP1

Location	3-5 Kello	way Ave	nue	, Camo	len
ol'	NICIALI	10.11		~	

4-

				*.								
Loca	tion	3-5 Kelloway Avenue,	Cam	nden				Starte	d	30 May 202	23	
Clie	nt	NSW Land & Housing	Corp	oorati	on			Compl	eted	30 May 202	23	
Job	No.	9557/1						Logged	d By	JC	Dat	e 30 May 2023
Shee	ets	1 of 1						Reviev	v By	JC	Dat	e 01 June 2023
Drill	ing Co	ontractor Matvel Ex	cavat	tions			Surface RL -	Latitud	le	-		
Plan	t	Yanmar vi	o5-5				Inclination 90°	Longti	tude	-		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	DCF BLC 5 10 15 20	- DWS 0 25 30	MATERIAL ORIGIN & OBSERVATIONS
EX	GWNE	TP1_0.40-0.50 TP1_0.40-0.60 TP1_0.60-0.90 TP1_1.00-1.10		0.00			TOPSOIL: Silty CLAY: low plasticity, dark brown, trace vootlets Silty CLAY: high plasticity, red brown, trace fine sub- angular gravels Silty CLAY: high plasticity, brown mottled grey, trace fine to medium sub-angular gravels	 M < PL	St - VSt VSt - H	12 9 9 9 9 7 7 7 7 7 5 5 5 9 9 13/50mm		TOPSOIL RESIDUAL SOIL
				2-			Terminated at 1.70m. Refusal on bedrock.					

Test Pit LOG

TP ID: TP2

Location 3-5 Kelloway Avenue, Camden Started 30 May 2023 Client NSW Land & Housing Corporation Completed 30 May 2023 Sheets 1 of 1 Logged By JC Date 30 May 2023 Sheets 1 of 1 Logged By JC Date 01 June 2023 Drilling Contractor Matter Excavations Surface RL - Latitude - Plant Yanmar vio5-5 Inclination 90° Longtitude - 0 SampLes & FIELD TESTS B B B B B 0 Matterial DESCRIPTION WE B B B 10 12 Date 10 15 20 25 30 172_0.040-0.50 1 1 TOPSOL Silly CLAY top plasticity, fork brown motted grey, trace 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 0 1 1 1 1 10 10 1 1 1 1 1 10 10 10 1 1 1 1 10 10 10 1 1		C												
Client New Land & Housing Corporation Completed 30 May 2023 Job No. 9557/1 Some 30 May 2023 Logged By JC Date 30 May 2023 Prilling Contractor Matvel Excavations Surface RL Latitude - Plant Yanmar vio5-5 Inclination 90° Longtitude - Image: Samples & graph of the scavations Surface RL Latitude - Image: Samples & Field TESTS Image: Samples & graph of the scavations MATERIAL DESCRIPTION Image: Samples & graph of the scavations & grap	Locat	ion	3-5 Kelloway Avenu	ie, Cam	den				Starte	d	30 M	ay 2023		
Job No. 9557/1 Logged By JC Date 30 May 2023 Sheets 1 of 1 Review By IC Date 01 June 2023 Plant Yanmar vio5-5 Inclination 90* Latitude - Image: Sample SA SAMPLES & more strain of the	Clien	t	NSW Land & Housi	ng Corp	orati	on			Compl	eted	30 M	ay 2023		
Sheets 1 of 1 Review By JC Date 01 June 2023 Drilling Contractor Matvel Excavations Surface RL - Latitude - Plant Vanmar vio5-5 Inclination 90° Longtitude - 0g SAMPLES & FIELD TESTS Image: Sample S & 000 get Image: Sample S & 000	Job N	lo.	9557/1						Logge	d By	JC	Da	ite	30 May 2023
Drilling Contractor Matvel Excavations Surface RL Latitude Plant Yanmar vio5-5 Inclination 90° Longtitude 0 Image: Strate RL Samples & Surface RL Latitude 0 Image: Strate RL Inclination 90° Longtitude 1 Image: Strate RL Image: Strate RL Image: Strate RL Image: Strate RL 1 Image: Strate RL Image: Strate RL Image: Strate RL Image: Strate RL 1 Image: Strate RL Image: Strate RL Image: Strate RL Image: Strate RL 1 Image: Strate RL Image: Strate RL Image: Strate RL Image: Strate RL 1 Image: Strate RL Image: Strate RL Image: Strate RL Image: Strate RL 1 Image: Strate RL Image: Strate RL Image: Strate RL Image: Strate RL 1 Image: Strate RL Image: Strate RL Image: Strate RL Image: Strate RL <	Shee	ts	1 of 1						Review	v By	JC	Da	ite	01 June 2023
Plant Yanmarvio5-5 Inclination 90° Longtitude - 0	Drilli	ng Co	ontractor Matvel	Excavat	ions			Surface RL -	Latitud	de	-			
Open size SAMPLES & PIELD TESTS View of the second se	Plant	:	Yanmar	vio5-5				Inclination 90°	Longti	tude	-			
Image: State of the sub-angular gravels 0.00 Image: State of the sub-angular gravels <	METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	0 5 10	DCP BLOWS	30	MATERIAL ORIGIN & OBSERVATIONS
Image: Construction of the second	X	VNE	TP2_0.20-0.50 TP2_0.40-0.50		0.00_ 0.10_ 			TOPSOIL: Silty CLAY: low plasticity, dark brown, with vootlets Silty CLAY: high plasticity, brown mottled grey, trace fine sub-angular gravels		St -	5 3 5 6 8		RESI	SOIL DUAL SOIL
Image: state in the state		ß	TP2_1.00-1.10		0.60			Silty CLAY: high plasticity, red brown mottled grey, trace fine sub-angular gravels	M < PL	VSt		2	RESI	DUAL SOIL

Test Pit LOG

TP ID: TP3

Location	3-5 Kelloway Avenue, Camden
Client	NSW Land & Housing Corporation

Surface RL	-
Indination	0.00

Started	30 May 2023
Completed	30 May 2023

Job N	lo.	9557/1						Logge	d By	JC	Date	30 May 2023
Shee	ts	1 of 1						Review	w By	JC	Date	01 June 2023
Drilli	ng Co	ntractor Matvel Exc	avat	ions			Surface RL -	Latitu	de	-		
Plant	t	Yanmar vic	5-5			_	Inclination 90°	Longti	itude	-		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	5 10	DCP BLOWS) 15 20 25 30	MATERIAL ORIGIN & OBSERVATIONS
EX	GWNE	TP3_0.40-0.50 TP3_0.40-0.60		0.00 0.10 			TOPSOL: Silty CLAY: low plasticity, Silty CLAY: high plasticity, brown, trace fine to medium sub-angular gravels	M < Pl - M ≈ PL	St - VSt	5 5 5 5 5 5 5 6 7 7 7 5 5 6 6 8		TOPSOIL RESIDUAL SOIL
				2- 			Terminated at 1.90m. Refusal on bedrock.					

Ge	OTECH					Test Pit LOG				TP ID: TP4
Location Client Job No. Sheets	3-5 Kelloway Avenue, NSW Land & Housing 9557/1 1 of 1	Camdo Corpo	en ration				Starte Compl Logged Review	d leted d By v By	30 May 2023 30 May 2023 JC/KK Date JC Date	30 May 2023 01 June 2023
Drilling C	Contractor Matvel Ex	cavatio	ons			Surface RL -	Latitud	de ,	-	
Plant	Yanmar vi	o5-5				Inclination 90°	Longti	tude	-	
METHOD GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	, DEPTH (m) GRAPHIC	DO DO DO	KL (MAHU)	MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	DCP BLOWS 5 10 15 20 25 30	MATERIAL ORIGIN & OBSERVATIONS
GWNE	9557/1-TP4_0.40-0.50 9557/1-TP4_0.60-0.80 9557/1-TP4_1.00-1.10		0.00			TOPSOIL: Silty CLAY: low plasticity, Silty CLAY: high plasticity, brown mottled grey, trace fine sub-angular gravels	 M > PL	St VSt - H	3 3 3 5 6 7 7 11 90/60mm	PSOIL SIDUAL SOIL
			3- - - - - - - - - - - - - - - - - - -							
		Thic	log ch			and in conjunction with EL Australia's accompa			rary potor	

Log Symbols & Abbreviation	s (Non-cored Borehole Log)
----------------------------	----------------------------

	Symbol/Value		Description						
Log Column	Symbol/value		Description						
Drilling Method	V-bit		Hardened steel 'V' shaped bit attached to auger						
5	TC-bit		Tungsten Carbide bit attached to auger						
	RR		Tricone (Rock Roller) bit						
	DB		Drag bit						
	BB		Blade bit						
Groundwater	Dry		Groundwater not encountered to the drilled or auger refusal depth						
	-		° '						
			Groundwater level at depths shown on log						
	•								
			Groundwater seepage at depths shown on log						
Environment Sample	GP		Glass bottle and plastic bag sample over depths shown on log						
	G		Glass bottle sample over depths shown on log						
	Р		Plastic bag sample over depths shown on log						
PID Reading	100		PID reading in ppm						
Geotechnical Sample	DS		Disturbed Small bag sample over depths shown on log						
	DB		Disturbed Bulk sample over depths shown on log						
	U ₅₀		Undisturbed 50mm tube sample over depths shown on log						
Field Test	N=10		Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per						
	3,5,5		150mm penetration.						
	N=R		'R' represents refusal to penetration in hard/very dense soils or in cobbies or						
	10,15/100		boulders.						
			I ne first number represents 10 blows for 150mm penetration whereas the second						
			number represents 15 blows for 100mm penetration where SPT met refusal						
	DCP/PSP	5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each						
		6	number represents blows per 100mm penetration. 'R/10' represents refusal after						
		5/10	10mm penetration in hard/very dense soils or in gravels or boulders.						
		R/10							
Classification	GP		Poorly Graded GRAVEL						
	GW		Well graded GRAVEL						
	GM		Silty GRAVEL						
	GC		Clayey GRAVEL						
	SP		Poorly graded SAND						
	SW		Well graded SAND						
	SM		Silty SAND						
	SC		Clayey SAND						
	ML		SILT / Sandy SILT / clayey SILT, low plasticity						
	MI		SILT / Sandy SILT / clayey SILT, medium plasticity						
	MH		SILT / Sandy SILT / clayey SILT, high plasticity						
	CL		CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity						
	CI		CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity						
	СН		CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity						
Moisture Condition									
Cohesive soils	M <pl< td=""><td></td><td>Moisture content less than Plastic Limit</td></pl<>		Moisture content less than Plastic Limit						
	M=PL		Moisture content equal to Plastic Limit						
	M>PL		Moisture content to be greater than Plastic Limit						
	-								
Cohesionless soils	D		Dry - Runs freely through hand						
	M		Moist - Lends to cohere						
Canaintangu	٧V		VVei - Lenas to conere						
	Ve		Contrained snear strength, Hand Penetrometer						
COLIESIVE SOILS	v 3 e		Vory Soft <12 (UU)						
	5		veryouil ≥12 <20 Soft ≤12 ≤25 25 50						
	St .		Firm \$25.8.<50 50.400						
	VSt		Stiff 50 & <100 100 - 200						
	н		V_{erv} Stiff $>100 \pm 200$ 200 ± 400						
			Hard >200 - 400						
Density Index			Term Density Index Is (%) SDT (N) (hlows/200mm)						
Cohesionless soils	VI		Verv Loose <15 <5						
			100se >15 & ≤35 >5 & <10						
	м		Medium Dense >35 & ≤65 >10 & ≤30						
	D		Dense >65 & ≤85 >30 & ≤50						
	VD		Very Dense >85 >50						
Hand Penetrometer	100		Unconfined compressive strength (g.,) in kPa determined using pocket						
	200		penetrometer, at depths shown on log						
Remarks	_~~		Geological origin of soils						
	Residual		Residual soils above bedrock						
	Alluvium		River deposited Alluvial soils						
	Colluvial		Gravity deposited Colluvial soils						
	Aeolian		Wind deposited Aeolian soils						
	Marine		Marine Soils						

AS1726 : 2017– Unified Soil Classification System

Major Divisions		Particle size (mm)	Group Symbol	Typical Names	Field Identi	fications Sand a	nd Gravels				Laboratory classificat	tion					
OVERSIZE	BOULDERS	>200							% Fines (2)	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes				
OVERSIZE	COBBLES	62						ري م									
		65	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	Wide range in g of all intermedia coarse grains, n	rain size and subs te sizes, not enou o dry strength	stantial amounts gh fines to bind	r Division	≤5	-	>4	between 1 and 3	1. Identify lines by the method given for fine				
	GRAVEL (more than half of	Coarse 19	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	Predominantly of some intermedia fines to bind coa	one size or range o ate sizes missing, arse grains, no dry	of sizes with not enough strength	n in 'Majo	≤5	-	Fails to com	ply with above	grained soils				
	coarse fraction is larger than 2.36mm)	Madium 0.7	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	Dirty' materials with excess of non-plastic fines, zero to medium dry strength		teria giver	≥12	Below 'A' line or $I_p < 4$	-	-	2. Borderline classifications occur when the				
COARSE GRAINED SOIL (more than 65% of		Fine 2.26	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-	-	fines (fraction smaller than 0.075mm size) is				
soil excluding oversize fraction is greater than 0.075mm)			SW	Well-graded sands, gravelly sands, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength				≤5	-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications				
	SAND (more than half of coarse fraction is smaller than 2.36mm)	Medium 0.21	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands					≤5	-	Fails to com	ply with above	require the use of dual symbols e.g. SP-SM, GW-				
		Moduli 0.2 1	SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	ification o	≥12	Below 'A' line or I _p <4	-	-					
		Fine 0.075	SC	SC Clayey sand, sand-clay mixtures		with excess of pla dry strength	istic fines,	for class	≥12	Above 'A' line of I _p >7	-	-	-				
		1 110 0.010	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Slow to	Toughness Low	ng 63mm		Below 'A'							
	SILT (0.075mm to 0 CLAY (<0.002mm)	3ILT (0.075mm to 0.002mm) & LAY (<0.002mm)		0.075mm to 0.002mm) & (<0.002mm)		(0.075mm to 0.002mm) & Y (<0.002mm) id Limit⊳50%		plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	rapid None to very slow	Medium	iterial passir	u uu	line Above 'A' line	60 <u>////////////////////////////////////</u>		
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	ation of ma	sing 0.075	Below 'A' line	50 ³⁶ <u>-</u> 40		112 A 1112 20				
SOIL (more than 35% of soil excluding oversize fraction is less than 0.075mm)		MH		MH Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts		Low to None to Low to medium		the grada	1 35% pas	Below 'A' line	X 30 M // C 0 or O 0						
	SILT (0.075mm to 0.0 CLAY (<0.002mm)	002mm) &	СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	More than	Above 'A' line	broken and	OL MH or 0	H				
			OH (1)	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium	1	_	Below 'A' line		ML or OL 30 40 50 60 70 LIQUID LIMIT W _L , %) 80 90 100				
	HIGHLY ORGANIC S	SOILS	Pt (1)	Peat and highly organic soils	Identified by colo generally by fibr	our, odour, spong ous texture	y feel and		Effervesce	s with H ₂ O ₂	1						

Log Syml	bols & Abbreviatio	ns (Cored Boreho	ole Log)
		•	0,

Log Column	Symbol / Abbreviation	Description		
Core Size		Nominal Core Size (mn	n)	
	NQ NML C	47 52		
	HQ	63		
Water Loss		Complete water loss		
	\longrightarrow	Partial water loss		
Weathering (AS1726:2017)	RS	Residual Soil	Material is weathered to such a	an extent that it has soil
			properties. Mass structure and r of original rock are no longer vis been significantly transported	naterial texture and fabric sible, but the soil has not
	XW	Extremely Weathered	Material is weathered to such a properties. Mass structure and r of original rock are still visible	an extent that it has soil naterial texture and fabric
	HW	Highly Weathered	The whole of the rock material is iron staining or bleaching to the the original rock is not recogni significantly changed by weat minerals have weathered to clay be increased by leaching, or m deposition of weathering products	is discoloured, usually by extent that the colour of zable. Rock strength is hering. Some primary / minerals. Porosity may lay be decreased due to s in pores.
	MW	Moderately Weathered	The whole of the rock material i iron staining or bleaching to the the original rock is not recogniza change of strength from fresh roc	is discoloured, usually by extent that the colour of ble, but shows little or no k
	SW	Slightly Weathered	Rock is partially discoloured w along joints but shows little or no fresh rock	ith staining or bleaching o change in strength from
	FR	Fresh	Rock shows no sign of dec minerals or colour changes	omposition of individual
		Note : Where it is not Distinctly Weathered (I changed by weatheri ironstaining. Porosity deposition of weatherin	possible to distinguish between H DW) may be used. DW is defined ng. The rock may be highly may be increased by leaching, o g products in pores'	W and MW rock the term as 'Rock strength usually discoloured, usually by or may be decreased by
Strength (AS1726:2017)	M	Term	Point Load Strength Index (I _{s50} , I	MPa)
	L	Low	>0.1 ≤0.3	
	M	Medium	>0.3 ≤1	
	VH	Very High	>1 <u>5</u> 3 >3 ≤10	
	EH	Extremely High	>10	0
Defect Spacing		Extremely closely space	ed	<pre>spacing (mm) <20</pre>
		Very closely spaced		20 to 60
		Closely spaced		60 to 200 200 to 600
		Widely spaced		600 to 2000
		Very widely spaced		2000 to 6000
Defect Description (AS1726:2017)		Extremely widely space	d	>6000
Туре				
	Pt	Parting		
	Sh	Sheared Surface		
	Sz	Sheared Zone		
	Ss	Sheared Seam		
	ls	Infilled Seam		
	Ews	Extremely Weathered S	Seam	
Macro-surface geometry	St	Stepped		
	Cu	Curved		
	Un	Undulating		
	Ir Pl	Planar		
Micro surface geometry	Vro	Vory Pough		
where-surrace geometry	Ro	Rough		
	Sm	Smooth		
	Po	Polished		
		GIICKENSIUEU		
Coating or infilling	cn	clean		
	sn	stained		
	cg	coating		

Grain S	ize mm		Bedded rocks (mostly sedimentary)									
More than 20	20	Gr De	ain Size scription			At leas	st 50% of	grains are of carl	bonate	At least 50% of grains are of fine-grained volcanic rock		
	6	RUD	ACEOUS	CONGLOMERATE Rounded boulders, cob cemented in a finer mat Breccia Irregular rock fragments	bles and gravel trix s in a finer matrix		DLOMITE ed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite	
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grains, commonly cemented by clay, calcite or iron minerals Quartzite Quartz grains and siliceous cement Arkose Many feldspar grains		LIMESTONE and D (undifferentia		Calcarenite		Cemented volcanic ash	Gypsum	
	0.06	-		Greywacke Many rock chips								
	0.002 Less than 0.002	ARGIL	LLACEOUS	OUS HALE CLAYSTONE SHALE CLAYSTONE Fissile Mostly clay		Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF Very fine-grained TUFF		
Amorpho crypto-cry	us or /stalline	s or Flint: occurs as hands of nodules in the chall talline Chert: occurs as nodules and beds in limesto					calcareou	s sandstone			COAL LIGNITE	
	Granular cemented – except amorphous rocks				cks							
	SILICEOUS			CALCAREOUS				SILICEOUS	CARBONACEOUS			
SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strer specimens and is best seen in outcrop. Only Calcareous rocks contain calcite (calcium car			ength, sor ly sedime arbonate)	me sands ntary rocl which ef	tones are stronge ks, and some met	er than m tamorphic ute hydro	any Igneous rocks. Bedding c rocks derived from them, co	may not show in hand ntain fossils				

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

Obviously for	liated rocks (mostly metamorphic)	Rocks with	(mm)					
Grain size description			Grain size description	Pe	Pegmatite		Pyrosenite	More than 20
	CNEISS	MARBLE			Γ	_	Poridorito	20
	Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO	Fendonte	6
COARSE		Granulite	COARSE	These rocks are phorphyritic and for example, as	sometimes are then described, porphyritic granite			
	Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2
	SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
MEDIUM		Serpentine	MEDIUM	These rocks are phorphyritic and as porphyries	These rocks are sometimes phorphyritic and are then described as porphyries			0.2
		_						0.06
FINE	PHYLLITE Slightly undulose foliation; sometimes 'spotted'		FINE	RHYOLITE	ANDESITE	BASAI T		0.002
	SLATE Well developed plane cleavage (foliation)			These rocks are phorphyritic and as porphyries	e sometimes I are then described	Brioner		Less than 0.002
	Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
CRYSTALLINE			Pale<	Pale<>Dark				
SILICEOUS		Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
METAMORPHIC ROCKS Most metamorphic rocks are distinguished by foliation which may impart fissility. Foliation in gneisses is best observed in outcrop. Non- foliated metamorphics are difficult to recognize except by association. Any rock baked by contact metamorphism is described as 'homfels' and is generally somewhat stronger than the parent rock Most fresh metamorphic rocks are strong although perhaps fissile			IGNEOUS ROCKS Composed of closely interlocking mineral grains. Strong when fresh; not porous Mode of occurrence : 1 Batholith; 2 Laccoliths; 3 Sills; 4 Dykes; 5 Lava Flows; 6 Veins					

TEST RESULTS - SHRINK / SWELL INDEX

NSW LAND & HOUSING CORPORATION LEVEL 4, PARRAMATTA SQUARE, 12 DARCY STREET PARRAMATTA NSW 2150 Laboratory: Job No: Prestons 9557/1

Page 1 of 1

LIMITED SITE INVESTIGATION 3-5 KELLOWAY AVENUE, CAMDEN

Test Procedure: AS 1289 7.1.1 Test Pit No. 1 3 Depth (m) 0.4-0.6 0.4-0.6 Laboratory Number 9557/1-1 9557/1-2 Date Tested: 08/06/23 08/06/23 Tested By: DP DP Checked By: MM MM **Test Description Moisture Content** Initial % 17.1 21.4 Final % 23.5 28.8 Swell % 9.5 6.1 Shrinkage % 3.8 4.6 Shrink/Swell 4.7 4.2 Index %/_pF Material Description Silty CLAY, high Silty CLAY, high plasticity, redplasticity, brown, brown, traces of traces of gravel. gravel

Form No R007 Version 13 07/21

Accredited for compliance with ISO/IEC 17025 - Testing.

M Morley

Report Date 08/06/2023

NATA Accreditation Number 2734 Corporate Site Number 14227

34 Borec Road, Penrith NSW 2750 Telephone: (02) 4722 2744 Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 email: info@geotech.com.au www.geotech.com.au

Approved Signatory

TEST RESULTS - ATTERBERG LIMITS Test Procedure AS1289 3.1.1, 3.2.1, 3.3.1, 3.4.1

NSW LAND & HOUSING CORPORATION LEVEL 4, PARRAMATTA SQUARE, 12 DARCY STREET PARRAMATTA NSW 2150

Prestons 9557/1

Laboratory:

Job No:

PROJECT: LIMITED SITE INVESTIGATION 3-5 KELLOWAY AVENUE, CAMDEN

	·			Page 1 of 7
Date Tested: 7/06/2023	3	Tested By:		
Test Pit No	Δ	Checked by.	IVIIVI	
Laboratory Number	95571-3			
Depth (m)	0.6-0.8			
Test Description				
Liquid Limit (W_L)	71%			
Plastic Limit (W _P)	29%			
Plastic Index (I _P)	42%			
Linear Shrinkage (LS)	18.5%			
Mould Length (mm)	250			
Sample History	Oven Dried Dry Sieved	Oven Dried Dry Sieved	Ove Dry	en Dried / Sieved
Material Description	Silty CLAY, High plasticity, brown mottled grey, traces of gravel.			
Form No R004 Version 13 - 07/21 - Issu	ed by ER		M Morley	Report Date
	Accredited for compliance with I	SO/IEC 17025 - Testing	w worey	9/00/2023

Nata Accreditation Number 2734 Corporate Site Number 14227

NATA

Accredited for compliance with ISO/IEC 17025 - Testing.

Approved Signatory

34 Borec Road, Penrith NSW 2750 Telephone: (02) 4722 2744

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111

email: info@geotech.com.au www.geotech.com.au

CALIFORNIA BEARING RATIO TEST REPORT

NSW LAND & HOUSING CORPORATION LEVEL 4, PARRAMATTA SQUARE, 12 DARCY STREET PARRAMATTA NSW 2150 Laboratory: Job No:

Prestons 9557/1

Page 1 of 1

PROJECT: LIMITED SITE INVESTIGATION 3-5 KELLOWAY AVENUE, CAMDEN

CBR Tes	st Procedure	Laboratory Corr	paction Method	Sampling Method		
AS12	289 6.1.1	AS128	9 5.1.1	AS1289 1.2.	1 Clause 6.5.4	
Tested By:	DP	Checked By: MM		CBR Test Date:	9/06/2023	
Laboratory Num	ber	9557/1-4	9557/1-5			
Drawing No. Test Pit No Depth (m) Date Sampled Compaction Test Date Sample Description		9557/1-AA1 1 0.6-0.9 30/05/2023 2/06/2023 Silty CLAY, high plasticity, brown mottled grey	9557/1-AA1 2 0.2-0.5 30/05/2023 2/06/2023 Silty CLAY, high plasticity, brown mottled grey.			
Maximum Dry D	ensity t/m3	1.49	1.49			
Optimum Moistu	re Content %	27.0	26.5			
Field Moisture C	ontent %	24.7	23.7			
% Retained 19m		0.0	0.0			
EXCluded (Yes / N	NO / NOT APPIICADIE)	res	res			
		CBR	TEST RESULTS			
Dry Density	Before soaking	1.47	1.46			
t/m ³	After soaking	1.42	1.42			
Density Ratio %	Before soaking	98.5	98.0			
Moisture	Before soaking	27.0	26.5			
Content %	After soaking	32.2	31.4			
Moisture Ratio %	Before soaking	99.5	99.5			
Number of Days Soaked		4	4			
Surcharge	kg	6.75	6.75			
Moisture	Top 30mm	41.3	36.5			
test %	Whole Sample	32.0	31.1			
Swell after soaki	ing %	3.5	3.5			
Penetration	mm	2.5	2.5			
CBR VALUE	%	1.0	1.5			

Form No R003 Version 05 07/21 - issued by ER

NATA

Accredited for compliance with ISO/IEC 17025 - Testing.

M Morley

Report Date 16/06/2023

Nata Accreditation Number 2734 Corporate Site Number 14227

Approved Signatory

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111 email: info@geotech.com.au www.geotech.com.au

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS	
Contact	Joe Chen	Manager	Huong Crawford	
Client	Geotech Testing Pty Ltd	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	joe@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	9557/1 3-5 Kelloway Avenue, Camden	SGS Reference	SE248411 R0	
Order Number	9557/1	Date Received	31/5/2023	
Samples	8	Date Reported	9/6/2023	

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

Amy

Huong CRAWFORD Production Manager

SGS Australia Pty Ltd ABN 44 000 964 278

www.sgs.com.au

SE248411 R0

pH in soil (1:5) [AN101] Tested: 9/6/2023

			TP1	TP1	TP2	TP2	TP3
					0.01	0.01	
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	0.4-0.5
PARAMETER	UOM	LOR	SE248411.001	SE248411.002	SE248411.003	SE248411.004	SE248411.005
pH	pH Units	0.1	5.9	5.9	7.1	8.0	6.8

			TP3	TP4	TP4
			SOIL	SOIL	SOIL
			1.0-1.1	0.4-0.5	1.0-1.1
PARAMETER	UOM	LOR	SE248411.006	SE248411.007	SE248411.008
рН	pH Units	0.1	8.6	6.1	5.9

SE248411 R0

Conductivity and TDS by Calculation - Soil [AN106] Tested: 9/6/2023

			TP1	TP1	TP2	TP2	TP3
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	0.4-0.5
PARAMETER	UOM	LOR	SE248411.001	SE248411.002	SE248411.003	SE248411.004	SE248411.005
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	120	410	170	600	120

			TP3	TP4	TP4
			SOIL	SOIL	SOIL
			1.0-1.1	0.4-0.5	1.0-1.1
					31/5/2023
PARAMETER	UOM	LOR	SE248411.006	SE248411.007	SE248411.008
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	420	86	83

SE248411 R0

Moisture Content [AN002] Tested: 8/6/2023

			TP1	TP1	TP2	TP2	TP3
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.4-0.5	1.0-1.1	0.4-0.5	1.0-1.1	0.4-0.5
PARAMETER	UOM	LOR	SE248411.001	SE248411.002	SE248411.003	SE248411.004	SE248411.005
% Moisture	%w/w	1	17.2	20.8	14.0	12.8	21.8

			TP3	TP4	TP4
			SOIL	SOIL	SOIL
			1.0-1.1	0.4-0.5	1.0-1.1
PARAMETER	UOM	LOR	SE248411.006	SE248411.007	SE248411.008
% Moisture	%w/w	1	14.1	19.2	18.5

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS	
Contact Client Address	Joe Chen Geotech Testing Pty Ltd P.O. Box 880 PENRITH NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	joe@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	9557/1 3-5 Kelloway Avenue, Camden	SGS Reference	SE248411 R0	
Order Number	9557/1	Date Received	31 May 2023	
Samples	8	Date Reported	09 Jun 2023	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	Conductivity and TDS by Calculation - Soil	8 items
	pH in soil (1:5)	8 items
Analysis Date	Conductivity and TDS by Calculation - Soil	8 items

- SAMPLE SUMMARY				
Sample counts by matrix	8 Soil	Type of documentation received	COC	
Date documentation received	31/5/2023	Samples received in good order	Yes	
Samples received without headspace	N/A	Sample temperature upon receipt	18.0°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	None	Samples clearly labelled	Yes	
Complete documentation received	Yes	Number of eskies/boxes received		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Australia

Australia

Member of the SGS Group

www.sgs.com.au

Mothod: ME (ALI) JENN/JANI406

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

ductivity and TDS by Calculation - Soil

conducatily and TDO by	Galoaladon - Goli						moulou.	me (to)[Entry attoo
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE248411.001	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
TP1	SE248411.002	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
TP2	SE248411.003	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
TP2	SE248411.004	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
TP3	SE248411.005	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
TP3	SE248411.006	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
TP4	SE248411.007	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
TP4	SE248411.008	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	07 Jun 2023	09 Jun 2023†
Moisture Content							Method:	

Extraction Due Sample Name Sample No. QC Ref Sampled Received Extracted Analysis Due Analysed TP1 SE248411.001 LB281930 31 May 2023 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023 TP1 SE248411 002 I B281930 31 May 2023 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023 TP2 SE248411.003 LB281930 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023 31 May 2023 TP2 SE248411.004 LB281930 31 May 2023 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023 ТР3 SE248411.005 LB281930 31 May 2023 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023 TP3 SE248411.006 LB281930 31 May 2023 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023 TP4 SE248411.007 LB281930 31 May 2023 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023 TP4 SE248411.008 LB281930 31 May 2023 31 May 2023 14 Jun 2023 08 Jun 2023 13 Jun 2023 09 Jun 2023

Method: ME-(AU)-[ENV]AN101

pH in soil (1:5)	VII (1:5) Method: ME-(AU)-[ENV]AN101									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
TP1	SE248411.001	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		
TP1	SE248411.002	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		
TP2	SE248411.003	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		
TP2	SE248411.004	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		
TP3	SE248411.005	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		
TP3	SE248411.006	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		
TP4	SE248411.007	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		
TP4	SE248411.008	LB282041	31 May 2023	31 May 2023	07 Jun 2023	09 Jun 2023†	10 Jun 2023	09 Jun 2023		

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE248411 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soil Met						
Sample Number	Parameter	Units	LOR	Result		
LB282041.001	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	0.81		

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Conductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN1									e
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE248456.002	LB282041.014	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	130	150	31	18	
SE248521.004	LB282041.019	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	350	380	31	8	

Moisture Content

Moisture Content Method: ME-(AU)-[ENV]AN00							ENVJAN002	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248411.008	LB281930.011	% Moisture	%w/w	1	18.5	18.5	35	0
SE248456.002	LB281930.014	% Moisture	%w/w	1	11.2	11.2	39	0

pH in soil (1:5)

H in soil (1:5) Method: ME-(AU)-[ENV]AN							ENVJAN101	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248456.002	LB282041.014	рН	pH Units	0.1	6.9	7.5	31	8
SE248521.004	LB282041.019	pH	pH Units	0.1	5.2	5.1	32	2

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation	nductivity and TDS by Calculation - Soil Method: ME-(AU)-[ENV]AN106								
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB282041.002	Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	NA	303	85 - 115	95		

pH in soil (1:5)

pH in soil (1:5)	in soil (1:5)					lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB282041.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

GEOTECH TESTING PTY LTD

Laboratory Test Request / Chain of Custody Record

TO:	SCS ENVIDON		DVICES				Complian D		10	1.1.1.1	i ugo	1011	
0:	UNIT 16 33 MADDOX S ALEXANDRIA	IREET NSW 2015	RVICES				Sampling By	y:	JC	Job No Project:	9557/1		
PH: ATTN:	02 8594 0400 Ms Emily Yin		FAX: 0	2 8594 0499		Project Manager:		JC	Location:	3-5 Kelloway Avenue, Camden			
	Sampling	ampling details							Results requi		ed by: 9/06/23		
Location	Depth	Soil	Water	EC (1:5)	рН	Sulphate	Chloride	ESP			Notes	Keep Sam	
TP1	0.4-0.5	DSP		V	~						ESP=Exchnageable Sodium Percentag	e	
	1.0-1.1	DSP		V	\checkmark							1	
TP2	0.4-0.5	DSP		V	~								
	1.0-1.1	DSP		1	~								
TP3	0.4-0.5	DSP		V	~						-		
	1.0-1.1	DSP		V	~								
TP4	0.4-0.5	DSP		V	\checkmark								
	1.0-1.1	DSP		~	~								
												·	
											SGS EHS Sydney COC		
											SE248411	_	
									-				
)	
					-								
			1							_			
			3.3										
						-							
	1			Ploas	o Lleo Gor	tochnico		oring T	Formul	oto for Donort	in a		
Dolinguished			hv	e use det	I Engineering Templete for Reporting			ete for Report	ng Popiliad by				
1	lame		S	Signature Date				Name			Signature		
Joe			_	JC 31/05/2023			MIBDISON			18	81/5/2		

Form No 4.7F2-5 SGS

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	s	LABORATORY DETA	NLS	
Contact	Joe Chen	Manager	Huong Crawford	
Client	Geotech Testing Pty Ltd	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	joe@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	9557/1 3-5 Kelloway Avenue, Camden	Samples Received	Wed 31/5/2023	
Order Number	9557/1	Report Due	Fri 9/6/2023	
Samples	8	SGS Reference	SE248411	

SUBMISSION DETAILS

This is to confirm that 8 samples were received on Wednesday 31/5/2023. Results are expected to be ready by COB Friday 9/6/2023. Please quote SGS reference SE248411 when making enquiries. Refer below for details relating to sample integrity upon receipt.

O much south have the	0.0.1	The state of the second strength of the state of the second strength of the second strengt	000
Sample counts by matrix	8 2011	Type of documentation received	COC
Date documentation received	31/5/2023	Samples received in good order	Yes
Samples received without headspace	N/A	Sample temperature upon receipt	18.0°C
Sample container provider	SGS	Turnaround time requested	Standard
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes
Sample cooling method	None	Samples clearly labelled	Yes
Complete documentation received	Yes	Number of eskies/boxes received	

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Sampling date was not provided. It is assumed to be as date samples were relinquished.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS .

Client Geotech Testing Pty Ltd

Project 9557/1 3-5 Kelloway Avenue, Camden

-	SUMMARY	OF ANALYSIS				-
	No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)	
	001	TP1 0.4-0.5	1	1	1	
	002	TP1 1.0-1.1	1	1	1	
	003	TP2 0.4-0.5	1	1	1	
	004	TP2 1.0-1.1	1	1	1	
	005	TP3 0.4-0.5	1	1	1	
	006	TP3 1.0-1.1	1	1	1	
	007	TP4 0.4-0.5	1	1	1	
	008	TP4 1.0-1.1	1	1	1	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .